
Transformer Notes

Kaili Huang

Feb 1, 2022

1 Transformer
The Transformer [1] is a revolutionary model architecture that tackles the sequence transduction
problem in a different way than what we’ve learnt in the previous lectures (RNNs). By eschewing
recurrence and instead relying solely on attention mechanisms to draw the dependencies between
input and output, Transformer has outperformed the state-of-the-art models in various tasks with
significantly more parallelization, which results in less training time.

2 Encoder-Decoder Structure
The Transformer is an encoder-decoder model, as shown in Figure 1. The encoder maps the input
sequence to a sequence of vector representations. Given a sequence of tokens (i.e., words, subwords,
etc), (w1, w2, ..., wn), the output of the encoder is a sequence of vectors Z = (z1, z2, ..., zn) where
zi ∈ Rdmodel is the representation of token wi. The decoder then takes Z and generates a sequence

Figure 1: The Encoder-Decoder structure

of output tokens (y1, y2, ..., ym), one token at a time. The decoder is auto-regressive, which means
at each step, it takes the previously generated token as an additional input to generate the next
token.
We will first introduce attention, one of the core components of the Transformer, then go through
the encoder, and then move to the decoder.

3 Attention

3.1 Scaled Dot-Product Attention
The attention mechanism adopted by the Transformer model is Scaled Dot-Product Attention. We
take the self-attention mechanism in the encoder module (we’ll explain the encoder in the next
section) as an example.
We are given a sequence of tokens, s = (w1, w2, ..., wn), which have already been mapped into
embedding vectors x1, x2, ..., xn ∈ Rdmodel in the previous modules. We want to determine how
wi, i ∈ {1, 2, ..., n} attends to all the tokens in the sequence. The computation of the attention
scores can be decomposed into the following steps:

1. Let WQ ∈ Rdmodel×dk ,WK ∈ Rdmodel×dk ,WV ∈ Rdmodel×dv denote three parameter matrices
that we will train during the training time. With these matrices, we can create a query



vector, a key vector and a value vector for each of the tokens.

qi = WQxi

ki = WKxi

vi = WV xi for i ∈ {1, 2, ..., n}

We call these vectors “query”, “key”, and “value” because we want them to represent each
token from a particular aspect. The roles they play will be clear in the following steps.

2. Then we calculate a raw attention score for every pair of tokens. For every wi, we want to
calculate how it attends to all the tokens in the sequence. So we use wi’s query vector, and
score every token against wi using their key vectors. Because every token becomes the query
for once, we calculate eij for all the (i, j) pairs.

eij = qi · kj for i, j ∈ {1, 2, ..., n}

3. The third step is to multiply all the eij ’s by a scaling factor 1√
dk

. This leads to more stable
gradients.

sij =
eij√
dk

To learn why this specific value is chosen, we can assume the components of q and k are
independent random variables with mean 0 and variance 1. Then the dot product q · k =∑dk

j=1 qjkj has mean 0 and variance dk. Hence, we multiply 1√
dk

to normalize the variance,
thus facilitating the training.

4. Next, we normalize the attention scores with a softmax function.

αij = softmax(sij) =
exp(sij)

n∑
k=1

exp(sik)

5. The final step is to multiply the attention score with the value vectors and sum them up.

zi =

dk∑
j=1

αijvj

That concludes the self-attention calculation for an input sequence. The resulting vectors
(z1, z2, ..., zn) can then be sent to the following neural networks. In conclusion, the self-attention
layer calculates a weighted sum of value vectors, where the weights are determined by the dot-
product of query vectors and key vectors.

3.2 The Matrix Form
In practice, it’s often more useful to do computations with matrices. Assume we have a batch of
embedding vectors, X ∈ Rb×dmodel , together with the parameter matrices WQ,WK ,WV described
above. The self-attention calculation in the matrix form can be done as follows:

1. Compute Q ∈ Rb×dk ,K ∈ Rb×dk , V ∈ Rb×dv matrices, as shown in Figure 2.

Q = XWQ

K = XWK

V = XWV

2. Calculate the raw attention score matrix E ∈ Rb×b.

E = QKT



Figure 2: Calculate the Q,K,V matrices [3]

3. Apply the scaling factor to E.

S =
E√
dk

4. Use softmax to normalize the attention matrix to get T ∈ Rb×b. Every row of T is normalized
and has norm 1.

T = softmax(S)

5. Calculate the weighted sum Z ∈ Rb×dv , as shown in Figure 3.

Figure 3: Calculate the self-attention [3]

Z = TV = softmax

(
QKT

√
dk

)
V

3.3 Multi-Head Attention
As discussed above, the parameter matrices WQ,WK ,WV are to extract useful information from
the sequence from a certain aspect. However, as natural language often contains very rich mean-
ings, a single set of parameter matrices can fall short of generating a good representation of the
sequence. Thus, we can benefit from having multiple sets of WQ,WK ,WV matrices, which are
learned in parallel and ideally can project the input embeddings into different representation sub-
spaces.
This mechanism is called multi-head attention. Each attention output we calculated in the pre-
vious sections is called an attention head. headi (i.e., Zi) is calculated with parameter matrices
WQ

i ,WK
i ,WV

i :



Figure 4: Calculate the multi-head attention [3]

headi = softmax

(
QiK

T
i√

dk

)
Vi = softmax

(
(XWQ

i )(XWK
i )T√

dk

)
(XWV

i )

Assume we’re using the h-head attention. Let WO ∈ Rhdv×d denote another parameter matrix
that we will train. We first concatenate the h attention heads, and then use WO to project the
embedding matrix back to Rb×dmodel . Figure 4 shows this process.

M = Concat(head1, head2, ..., headh)W
O

For the hyper-parameters, Vaswani et al. uses h = 8 and dk = dv = dmodel/h = 64.

4 Encoder
Let’s first take a look at a single layer in the encoder. As Figure 5 shows, we can break an encoder
layer into two sub-layers: a self-attention layer, followed by a feed-forward neural network (FFN).
Let X = (x1, x2, ..., xn) denote the input of a sub-layer, where each xi ∈ Rdmodel is a vector rep-

Figure 5: A (simplified) encoder layer

resentation of the original input token wi. Then let’s analyze the outputs of the two sub-layers.

1. Self-attention. As the previous section introduced, it applies linear transformations to X and
produces a sequence of query, key, and value vectors Q,K, V . Then the multi-head scaled
dot-product attention is calculated.

2. Feed-forward neural network. It consists of two linear transformations with a RELU activa-
tion in between, and it operates on each xi.

FFN(xi) = RELU(xiW1 + b1)W2 + b2 for i ∈ {1, 2, ..., n}

W1 ∈ Rdmodel×dff ,W2 ∈ Rdff×dmodel

The FFN is called point-wise, or position-wise, because it applies exactly the same two linear
transformations for every position i within the same layer.



Figure 6: Position-wise FFN: apply the same linear transformations to every position within the
same layer [3]

The encoder stacks N such layers. The layers are of exactly the same architecture, but they don’t
share parameters. All sub-layers produce outputs of dimension dmodel. The vanilla Transformer
proposed by Vaswani et al. sets N = 6, dmodel = 512, and dff = 2048.

5 Positional Encoding
Since the model does not use a recurrent structure, it cannot take the order of the input sequence
into account. As a result, we lose a significant amount of information. Therefore, the Transformer
adds the positional encoding (PE) to the input embeddings before sending the embeddings into
the encoder layers.
The positional encoding uses sine and cosine functions of different frequencies. Here pos is the
position of a token and 2i, 2i+ 1 represent the dimensions.

Figure 7: Positional encoding [2]

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

)
for i ∈ {0, 1, ..., dmodel/2− 1}

We can also take a look at the positional encoding of a given position k (assume dmodel = 256):

pk =


sin
(
k/100000/256

)
cos
(
k/100000/256

)
...

sin
(
k/10000254/256

)
cos
(
k/10000254/256

)


Figure 7 shows a demo of the personal encoding. A row corresponds to a certain dimension, and
a column corresponds to a certain position.



One advantage of the sinusoidal positional encoding is that it may allow the model to extrapolate
to sequence lengths longer than the ones encountered during training.
The positional encoding is added to the token embeddings, and then the embeddings are fed into
the encoder.

6 Decoder

Figure 8: A (simplified) decoder layer

After analyzing the encoder structure, let’s take a look at the decoder. As Figure 8 shows, we
can break a decoder layer into three sub-layers: a masked self-attention layer, an encoder-decoder
attention layer, and a feed-forward neural network.
Again, let X = (x1, x2, ..., xn) denote the input of a sub-layer (the output of the previous decoder
sub-layer), where each xi ∈ Rdmodel is a vector representation of the original input token wi, and
let’s analyze the outputs of the three sub-layers.

1. Masked self-attention. Every position attends to all the history positions and itself, but not
to the future positions. That is to say, for vector xi, it should only attend to {x1, x2, ..., xi}.
This is because the decoder is auto-regressive, which means it generates one token at a time,
and it takes the previously generated token as an additional input. We want to prevent the
earlier steps from “seeing” the future ones, in order to emulate the auto-regressive process.

As shown in Figure 9, we can implement this inside of scaled dot-product attention by
masking out (setting to −∞) all values in the input of the softmax which correspond to
illegal connections. In that way, the output of softmax for the illegal connections will be 0.

2. Encoder-decoder attention. It performs multi-head attention over the output of the encoder
stack. This layer takes inputs from two sources: the previous decoder sub-layer, and the
encoder layer.
Let Z = (z1, z2, ..., zn) denote the output of the uppermost encoder layer. In this attention
layer, the query is from this decoder sub-layer’s input, and the key and value are from the
encoder output:

Q = XWQ

K = ZWK

V = ZWV

Then the multi-head scaled dot-product attention is calculated.

3. Feed-forward neural network. Same as the encoder.



Figure 9: Masked self-attention: assign −∞ to zero the softmax outputs [4]

7 Other Optimization

7.1 Residual Connections
Residual connections were first proposed by He et al. in 2015 and were proven effective to ease
the training of deep neural networks. The Transformer makes use of the residual connections by
applying them after every sub-layers in the encoder and decoder. Then the output of each sublayer
is changed to x+ Sublayer(x).

Figure 10: The encoder module with the residual connections and the layer normalization

7.2 Layer Normalization
Layer normalization, proposed by Ba et al. in 2016, is a useful method to stabilize the hidden
state and reduce the training time. The Transformer also adopts this optimization in both the



encoder and decoder. For each layer, the layer normalization statistics over all the hidden units in
the same layer are calculated as:

µl =
1

H

H∑
i=1

ali σl =

√√√√ 1

H

H∑
i=1

(
ali − µl

)2
And then the inputs are normalized to be:

xℓ′ =
xℓ − µℓ

σℓ + ϵ

Combined with the residual connections, the original Sublayer(x) transformation is changed to
LayerNorm(x + Sublayer(x)). Figure 10 shows the encoder layers with the residual connections
and the layer normalization. The same tricks are applied to the decoder as well.

8 The Whole Picture
Putting all these modules together, we get a whole picture of the Transformer, as shown in Fig-
ure 11. The Transformer model achieved a new state-of-the-art (SOTA) on both WMT 2014

Figure 11: The optimized encoder

English-to-German and WMT 2014 English-to-French translation tasks at the time it was pro-
posed. Nowadays, the Transformer has been applied to address a lot of different NLP tasks and
achieves outstanding performance. It also shows promising performance in domains out of NLP.
Besides, the Transformer architecture inspired various brilliant research findings, e.g., Transformer-
XL, BERT, GPT-2/3, etc. Its revolutionary architecture and remarkable achievements have made
it an especially important member of the NLP family.

9 Acknowledgements
The notes are adapted from the Stanford CS224N lecture on Transformers (by Anna Goldie).
Please drop me an email (kaili@cs.stanford.edu) for any corrections or feedback.



References
[1] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information Pro-

cessing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. url: https:
//proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf.

[2] Beitong Zhou et al. “Remaining Useful Life Prediction of Lithium-ion Battery based on At-
tention Mechanism with Positional Encoding”. In: IOP Conference Series: Materials Science
and Engineering 895 (July 2020), p. 012006. doi: 10.1088/1757-899X/895/1/012006.

[3] Jay Alammar. The illustrated transformer. url: https://jalammar.github.io/illustrated-
transformer/.

[4] Stanford CS231N Lecture 11: Attention and Transformers. url: http://cs231n.stanford.
edu/slides/2022/lecture_11_ruohan.pdf.


