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Abstract

While the English virtual assistants have achieved exciting performance with an
enormous amount of training resources, the needs of non-English-speakers have
not been satisfied well. Up to Dec 2021, Alexa, one of the most popular smart
speakers around the world, is able to support 9 different languages[1], while there
are thousands of languages in the world, 91 of which are spoken by more than 10
million people according to statistics published in 2019[2]. However, training a
virtual assistant in other languages than English is often more difficult, especially
for those low-resource languages. The lack of high-quality training data restricts
the performance of models, resulting in poor user satisfaction. Therefore, we devise
an efficient and effective training solution for multilingual task-orientated dialogue
systems, using the same dataset generation pipeline and end-to-end dialogue system
architecture as the SOTA paper BiToD[5], which adopted some key design choices
for a minimalistic natural language design where formal dialogue states are used
in place of natural language inputs. This reduces the room for error brought by
weaker natural language models, and ensures the model can correctly extract the
essential slot values needed to perform dialogue state tracking (DST). Our goal is to
reduce the amount of natural language encoded at each turn, and the key parameter
we investigate is the number of turns (H) to feed as history to model. We first
explore the turning point where increasing H begins to yield limiting returns on the
overall performance. Then we examine whether the examples a model with small
H gets wrong can be categorized in a way for the model to do few-shot finetuning
on. Lastly, will explore the limitations of this approach, and whether there is a
certain type of examples that this approach will not be able to resolve.

1 Motivation and Problem

While the English virtual assistants have achieved exciting performance with an enormous amount of
training data, non-English-speakers’ needs to interact with virtual assistants have not been satisfied
well. Up to Dec 2021, Alexa, one of the most popular smart speakers around the world, is able to
support 9 different languages [1], while there are thousands of languages in the world, 91 of which
are spoken by more than 10 million people according to statistics published in 2019 [2]. Therefore,
the importance of multilingual virtual assistants can never be overemphasized. Moreover, while
people are interacting with virtual assistants, it often occurs that they want to refer to certain entities
(e.g., Chinese restaurants, Korean songs, etc.) in the entities’ original languages.

*These authors contributed equally to this work.



However, training a virtual assistant in other languages than English is often more difficult, especially
for those low-resource languages. The lack of high-quality training data often restricts the performance
of models, resulting in poor user satisfaction. Therefore, it is very important to devise efficient and
effective training methods for multilingual virtual assistants.

2 Related Work

2.1 End-to-end Dialogue Systems

To build a conversational virtual assistant, a straightforward practice is to integrate multiple modules
(e.g. Natural Language Understanding, Dialogue Policy, etc.) into a dialogue system, where different
modules are trained separately to deal with different parts of the dialogue. However, this type of
modularized task-oriented dialogue systems are prone to accumulated errors. Since the first end-to-
end system, where all components of the system are trained at the same time, was developed [3], a lot
of progress has been made to get better overall performance while keeping the system compact. The
state-of-the-art method we build on uses a single seq2seq language model to simultaneously perform
each module of the virtual assistant.

2.2 Multilingual Dialogues Via Translation

Given a large amount of training data for English virtual assistants, we can directly use Neural
Machine Translation (NMT) to generate a parallel dataset in another language. However, challenges
include entities often being mistranslated/transliterated/dropped. Multiple methods can be adopted to
improve the quality of translation. For example, in order not to mess up the entities’ translation (e.g.,
a restaurant called “Lakeside Dining”, a dining hall at Stanford University, should not be translated to
“湖边的餐厅”, which means a restaurant near the lake), we can first assign each entity a standard
translation by using Google Translate followed by human correction, and then translate the complete
dialogue [4]. However, this does not assure accurate translation. Moreover, annotation and translation
errors can compound over multiple turns. Thus, translation with alignment is often not enough to
obtain a high-quality multilingual dataset.

2.3 BiToD

One of the state-of-the-art method is proposed in the BiToD paper [5]. BiToD uses a Seq-to-Seq
model such as mBART [6] that can be trained on multiple tasks simultaneously. The model (as
shown in figure 1) is trained on DST, Agent Policy and Agent Response tasks when given input data
with according prompts. In the end-to-end setting, at each step, the prediction of the previous step,
together with all the dialogue history (including user utterances and agent acts) are given as inputs to
the model to make prediction for the current step (e.g., updated dialogue state, whether to make an
API call, knowledge base query, etc). In the turn-by-turn evaluation setting, at each step, the gold
input is given as input instead, and will be used to validate and improve the model.

2.4 Dataset

In this work, we aim to understand the challenges of multilingual task-orientated dialogue systems
and devise solutions to them. We work with the dataset from the BiToD paper, where dialogues are
generated from a dialogue simulator that interacts with APIs on a bilingual knowledge base, and
then paraphrased via crowdsourcing. The entities map closely between English and Chinese, but the
simulated dialogues are not constructed in parallel. This pipeline already avoids the pains associated
with translation, but still have to grapple with a few of the aforementioned difficulties of multilingual
systems: less crowdsource workers for paraphrasing, lower annotation quality and weaker natural
language models. Due to the last factor, the option for neural generation module is also impractical.
Therefore, translated templates are used for natural language generation instead.

3 Approach

We believe BiToD’s work has an essential design which encodes the philosophy we take to our work:
a minimalistic natural language design where formal dialogue states are used in place of natural
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Figure 1: Model response generation workflow.[5]

language inputs. This reduces the room for error brought by weaker natural language models, and
ensures the model can correctly extract the essential slot values needed to perform its task. Due to
BiToD’s parallel design between English and Chinese, the authors showed that a bilingual model
trained on both English and Chinese data performed better than either of the two monolingual models.
That indicates using formal dialogue states reinforces model’s transfer learning abilities.

However, together with the formal dialogue states, this design also accumulates all historical natural
language utterances as part of the model’s inputs. We want to further optimize the model by putting
constraints on where natural language is fed as input to the system: the dialogue history.

3.1 Proposed Solution

Our goal is to reduce the amount of natural language encoded at each turn, and the key parameter we
investigate is the number of historical turns (H) to feed to the model. We first explore the turning
point where increasing H begins to yield limiting returns on the overall performance. Then we
examine whether the examples a model with small H gets wrong can be categorized in a way for the
model to do few-shot finetuning on. Lastly, we explore the limitations of this approach, and whether
there’s a certain type of examples that this approach won’t be able to resolve.

The agent responses have been replaced with formal dialogue acts, so the only natural language
encoded from the history will be the user utterances. There are three steps in each turn of the dialogue.
And the formal dialogue state is fed as input to each step in every turn: (1) “DST” (to obtain the state
update), (2) “API” (the agent policy, to determine whether to call an API or go to response), and (3)
“Response” (to generate dialogue act).

We use a separate natural language generation (NLG) module, decoupled from the end-to-end model
to eliminate error accumulation. And we use standard translated templates for agent response
generation.

3.2 Long-Range Dependency Issue

Figure 2 shows an example of long-range dependency. When the agent fails to find a place that
satisfies all the user’s requirements, it asks to change the location requirement. The user accepts
the suggestion and adds another requirement about the price. If we only feed in one historical input
(i.e. the user utterance in this turn), the agent can update “PriceRange” but cannot update “Location”
correctly because it cannot refer to the suggestion it has made in the previous turn. This example
gives an explanation as to why more history is necessary in some cases.

4 Experiments

In the data preprocessing step, we generate different datasets by adjusting the parameter H , which
refers to the maximum number of turns that can be encoded as part of the model’s input. Each
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Figure 2: Long-range dependency example.

turn can be a user utterance or agent dialogue act. For example, H = 1 means only the previous
turn’s user utterance is encoded (together with the current agent act, which is always encoded for all
models), and H = 2 means additionally encoding the previous turn’s agent act, and so forth. Since
we want to investigate the feasibility of reducing the amount of natural language encoded, we run
extensive experiments for different values of H on both the whole dataset and a few-shot dataset
which compiles examples including long range dependencies like the one in section 4.2.

4.1 Initial Experiment Procedure

We first preprocess the data for H = 1, 2, 3, 4 and put them in separate directories. Then, we use
genienlp’s train module [7][8] to run our initial experiments. We train an end-to-end Chinese to
Chinese model using Facebook’s mBART-large-50 [9] as our pretrained seq2seq model. All models
are trained for 50000 iterations. We use a training batch size of 800, validation batch size of 4000.
We use an Adam [10] optimizer for all experiments and use a transformer learning rate scheduler
with the initial learning rate of 0.01.

4.2 Few-shot Dataset Curation

We curated a few-shot dataset from the H = 1 directory involving examples with long-range
dependencies that require a H ≥ 2 model to disambiguate. To do so, we looked at one representative
dialogue pattern: examples that involve the agent making concrete recommendations or proposing
alternative slots. This is almost always the case after the agent outputs an “通知失败,请求更新” (i.e.
“inform failure, request update”) dialogue act. In both cases, the agent needs to remember what it said
(i.e. its previous dialogue act) in order to have context for the user’s response. Here is an example.

• User: Find me 5-star hotel in LA under $100/night.

• Agent: Sorry, no hotels satisfy your requirements. (1) Can I recommend some 3-star hotels
instead? (2)

• User: I’m cool with that (3)

• Agent: . . . ? (history: [User: I’m cool with that])

Note that (2: makes recommendation or suggests alternative) and (3: responds in affirmation, but
does not repeat the specific slot and value) define this pattern of examples. If the user did repeat the
agent’s recommendation (e.g. “I’m cool with 3-star hotels”), then the agent did not need to refer to
its historical dialogue act. (1: inform failure) doesn’t necessarily need to occur, but most often does.
For that practical reason, we sourced our few-shot dataset by matching for all dialogue_ids for which
the “通知失败,请求更新” dialogue act appeared, since for all cases we found, the “通知失败，请
求更新” dialogue act is followed by (2). Then, we manually narrowed the set down to only where
(3) holds. There are many cases where the user does mention the agent’s recommendation, but not
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clearly enough to disambiguate. We included these examples as well, since they may help make our
H = 1 model more robust.

Lastly, we split the few-shot dataset into training and validation splits. In total, our few-shot dataset
has 73 and 6 dialogues, 987 and 63 turns in training and validation respectively.

4.3 Few-shot Finetuning Procedure

Our fine-tuning procedure is very similar to the training procedure. We fix the same parameters for
a fair comparison, but validate and save the results every 2 (instead of 1000) steps. All models are
trained for 100 iterations.

4.4 Case Analysis of Examples

To analyze the difference between H = 2, 3, 4 models, we investigate the set of dialogue turns where
each model gets wrong (error set) and focus on the relationship of their error sets. Let S2, S3, S4

denote the error sets of H = 2, 3, 4 models, respectively. The size of the error sets and their
intersections are shown in table 1.

Set Size of Set
S2 1335
S3 1304
S4 1189
S2 ∩ S3 1001
S3 ∩ S4 954
S2 ∩ S4 714

Table 1: Sets of Turns Where Models Get Wrong

|A| |B| |A ∩B| |A−B| |B−A| Gain Loss
A = S2, B = S3 1335 1304 1001 334 303 25% 23%
A = S3, B = S4 1304 1189 954 350 235 27% 20%
A = S2, B = S4 1335 1189 714 621 475 47% 40%

Table 2: Stats of Sets of Turns where Models Get Wrong

We evaluate H = 3 model on the turns that S2 gets wrong to measure how much the model gains by
increasing H from 2 to 3. This can be calculated from figures in the table (|S2 − S2 ∩ S3| ÷ |S2| =
25%). Inversely, we also evaluate H = 2 model on S3, and compute how much the model loses:
|S3 − S2 ∩ S3| ÷ |S3| = 23%, which is close to 25%. This indicates that although H = 3 model has
a better performance on some samples than H = 2 model, it also does worse than H = 2 model on
some other samples. And the “gain” on performance (indicated by 25%) is very close to the “loss” on
performance (indicated by 23%). Then we reach the preliminary conclusion that from H = 2 model
to H = 3 model, we do not obtain a real improvement. The cases are different for H = 4 model,
however. The “gain” and “loss” from H = 3 model to H = 4 model are 27% and 20%, respectively.
And “gain” and “loss” from H = 2 model to H = 4 model are 47% and 40%, respectively. The
results are summarized in table 2.

4.4.1 Dialogues That Require 3 Turns

By digging deeper into the dialogue turns where H = 2 model makes mistakes and H = 3 models
does not, we find that there is not a mistake pattern related to the “long-range dependency” mentioned
in section 3.2. Take H = 2 model as an example. In the turns that H = 2 model gets wrong and
H = 3 model gets correct (S2 − S2 ∩ S3), 30% are wrong predictions on whether to make an API
call or not. 57% are mistakes made in the response step and the mistake patterns are mainly related
to different format of date (e.g., Monday v.s. Dec 6th), asking for different parameters to make a
certain query (e.g. for restaurant reservation, number of people v.s. reservation time), etc. The other
23% mistakes are made in the DST step, where a frequent mistake pattern is when the user asks “Is
there a hotel near that restaurant?”, the model cannot interpret “near that restaurant” to a correct
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location requirement, despite the dialogue state containing the restaurant reservation from earlier in
the dialogue. This pattern is thus not a long-dependency issue that requires H = 3.

4.4.2 Dialogues That Require 4 Turns

For dialogue turns that H = 2 model makes mistake and H = 4 model does not, we find an
interesting pattern. A simplified real example is shown below.

• User: Can you find me a restaurant near with more than 5 stars?

• Agent: Yes, I found 22 for you. I recommend Emporio Antico.

• User: Can you recommend another one? I want a cheaper one.

• Agent: Sure, I recommend DiVino Patio.

• User: What’s the address?

• Agent: The address is ...

• Agent: OK, please reserve it for me. (“it”=DiVino Patio)

In this example, after the agent gives some suggestion (DiVino Patio), the user further asks information
about the suggestion. And after that, when the user wants to make a reservation, the agent does not
know which restaurant to reserve unless the model is fed at least 4 historical inputs (H = 4).

After going through the diff between H = 2 model’s mistakes and H = 4 model’s, we find a few
such examples (more than 50 turns, according to rough estimation). To conclude, after analyzing the
models’ error types, we do not observe examples that require H = 3, but we observe a few examples
that require H ≥ 4. This should be a byproduct of the dialogue simulation pipeline of the BiToD
dataset.

The scenarios shown in the above example could hypothetically get more complex and the range of
the dependency arbitrarily long. If the user asks a lot about the suggestion and then asks the agent
to make a reservation, the agent will need to refer to a large amount of historical turns. However,
feeding arbitrarily many historical inputs does not seem an optimal way of solving this. A better
solution is to change the format of dialogue state, so that previous agent acts should also be properly
kept track of, and we will continue this discussion in section 9.

We will fine-tune on the much more common H = 2 dependency examples to improve our H = 1
model, as examples that have longer dependencies are too few to learn from.

5 Results

Max History (H) Exact Match (EM) Cased BLEU
H = 1 78.6 93.8
H = 2 82.6 95.2
H = 3 83.0 95.0
H = 4 84.5 95.5

Table 3: Whole Dataset

Max History (H) Exact Match (EM) Cased BLEU
H = 1 40.7 57.4
H = 1 w/ few-shot 62.4 (+21.7) 73.9 (+16.5)
H = 2 79.4 94.7
H = 3 83.0 95.0

Table 4: Few-shot Dataset

For these experiments, we evaluate in the turn-by-turn setting, where the gold input is fed in at every
turn.
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Max History (H) Exact Match (EM) Cased BLEU
H = 1 78.6 93.8
H = 1 w/ few-shot 78.6 93.7
H = 2 82.6 95.2
H = 3 83.0 95.0
H = 4 84.5 95.5

Table 5: Whole Dataset

6 Findings

Consistent with our initial motivations for reducing the amount of natural language encoded, we see
diminishing returns of storing more history. On the whole dataset, the H = 3 model only gets a 0.4
increase in EM, and a 0.2 decrease in Cased BLEU, putting in question the merit for extending H
beyond 2. We found most examples don’t even require 2 turns of history. Despite being extra lenient
with some examples for the purposes of making our H = 1 more robust, our few-shot data amounts
to just under 1% of the whole dataset.

Most amazingly, we discovered that for the few examples that do reference many turns ago, few-shot
finetuning a low (max history) model can easily match a high (max history) model without sacrificing
overall accuracy!

We can propose an optimal trade-off point for H(=1) to store which would balance between our goals
of reducing natural language footprint with maintaining strong performance after fine-tuning.

7 What did you learn?

We learned that more natural language doesn’t always help. Less natural language means less room
for error, more transferable formal representation, and more flexibility for generalization. Using
the minimal input needed helps reduce both training footprint and allow easy generalization via
fine-tuning to harder dialogues.

We learned that the formal representation of the dialogue state is especially relevant in the multilingual
setting, as it is the common language which all languages share, regardless if they’re a low-resource
language or a globally spoken one.

We also stumbled across a benefit of data created from simulation, since we were quickly able to
reverse-engineer the examples to find a canonical form of examples that require >= 2 turns of history,
namely to the dialogue act the agent outputted. Had the dialogues been naturally generated, that
would not have been possible. We found an underrated advantage of using synthetic data generation
is that it can help make debugging multilingual agents easy even for non-native speakers in the future.

8 Future work

A future extension of our current fine-tuning methodology would be to find harder few-shot data with
longer dependencies. As we have reached the limit of BiToD’s dataset existing simulation pipeline, it
is time to look for extensions of it that can sample user goals which are contingent on one another
and is often separated by at least H = 4 turns of history.

At the same time, we fully embrace alternative ways to encode history. As mentioned before, we
can properly encode agent acts into the dialogue state to directly track the agent’s recommenda-
tion/suggestion and resolve the long-range dependency examples in the BiToD dataset which require
H ≥ 4 turns of history.

Alternatively, we can relax the current slot-value-relation representation and keep miscellaneous text
spans that would seem relevant for a later dialogue state. For example, suppose the user mentions
a curious fact about their preferences early in the conversation e.g. “I really love burgers, but I’m
on a diet” then after being dissatisfied with the agent’s healthier recommendations later says “well I
only live once, so get me some fast food place now!” The agent would be expected to use the earlier
mention to find burger restaurants. This could involve a dynamic input/output/forget gates like in
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LSTM or other attention-based networks, which would train the agent to dynamically update parts of
its own dialogue state beyond accumulated slot-value-relation’s. These forms of alternate dialogue
state representation require more thought but we’ll be open to learning more should we be given the
opportunity to continue this line of work in the future!

9 Contributions

This project saw equal contributions between Michael and Kaili. Both worked very hard to make the
most out of it and found it a very rewarding experience! Mehrad was a helpful mentor who introduced
us to relevant resources and unblocked us when we got stuck. He also proofread this report.
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