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Abstract

GPT-3, since its release, has garnered the atten-
tion of the NLP community due to its versatility
across a wide range of NLP tasks. In this work,
we use GPT-3 to approach the OpenQA task,
where the model needs to answer input ques-
tions without being given the golden passage
that contains the correct answer. We work on
engineering the GPT-3 input to improve its per-
formance on the OpenQA task in the in-context
learning setting. We propose three different in-
context learning example selection strategies
that are based on lexical, syntactic and semantic
similarities. We also propose two example or-
dering mechanisms: random order and reverse
order. Overall, we found that: (1) The semantic
similarity-based model with reversely ordered
examples achieves highest performance, with
an F1 score of 0.5738 on the dev set and 0.4949
on the test set. (2) The lexical and syntactic
similarity-based models both outperform the
baseline model. (3) The number of examples
(either too many or too few) affects the model’s
performance.

1 Introduction

Between 2017 and 2019, there was a rise in the
adoption of the “pre-train and fine-tune” paradigm
for solving NLP tasks. In this paradigm, a Lan-
guage Model (LM) with a fixed architecture is pre-
trained on large datasets, and in the process, learns
some robust general-purpose features of the lan-
guage that it is modeling. The pre-trained LM is
then adapted to fit several downstream tasks by fine-
tuning it using task-specific objective functions.
Currently, there is a new wave in which this “pre-
train and fine-tune” paradigm is being replaced by
one popularly called “pretrain, prompt and predict”
(Liu et al., 2021). In this new paradigm, rather
than using objective engineering to adapt a LM to
downstream tasks, a textual prompt is used to refor-
mulate downstream tasks to look like those solved
during the original ML training. For example, the

input: “[passage]. According to the passage,
[question] [answer]” requires the LM to
fill the blank with the correct [answer] to the
input [question] from the given [passage].
By selecting appropriate inputs, we can guide the
pre-trained LM to predict the desired output and
often without additional task-specific training (Rad-
ford et al., 2019; Raffel et al., 2019; Brown et al.,
2020).
In addition to making the pre-training and fine-
tuning tasks more similar, this approach enables
users explain the task to the model, making it easier
for the model to understand the task. Hence, given
a number of appropriate examples and prompts as
inputs, an unsupervised pre-trained LM can be used
to solve a lot of different downstream tasks, and
this is referred to as in-context learning (Xie et al.,
2021). This then necessitates input engineering i.e.
designing a good input that allows a LM to solve
the given task. For this project, we have access to a
substantial number of training documents to design
the input to GPT-3.
In this paper, we apply GPT-3’s power and versa-
tility to solve in-context learning problems for the
OpenQA task. Open-domain Question Answering
(OpenQA) is an NLP-task that aims to answer a
question in the form of natural language without
a given golden passage, but with access to a large-
scale unstructured documents. In particular, we use
ColBERTv2, a retriever, to retrieve the most rele-
vant passage from the collection of SQuAD train
set passages. And we propose different strategies
(syntactic, lexical, semantic similarity-based mod-
els and their combination, etc.) to select similar
train set examples. Then, we combine the exam-
ples, the passage and the input question to create
the in-context input for GPT-3. We evaluate the
performance of GPT-3 on different designs of in-
context inputs. Our main goal is to understand how
to better select in-context examples that work well
with GPT-3’s in-context learning capabilities. Be-



sides that, we also explore the effect of different
example numbers and task descriptions.

2 Related Work

2.1 Retriever
For the in-context learning task, the gold passage
which contains the answer is not provided to the
system. Therefore, a retriever is responsible for
retrieving a series of relevant documents from a
given collection of documents to obtain the final
answer.
Classical information retreival (IR) mechanisms
assign terms and documents sparse representations.
For example, DrQA (Chen et al., 2017) applies
TF-IDF matching to search over Wikipedia, and
BERTserini (Yang et al., 2019) uses BM25 as the
ranking function.
In recent years, the Dense Retriever has evolved
rapidly, which learns distributed representations
that generally captures more meaningful semantic
information. Many dense retrievers encode queries
and documents into independent single-vector pre-
sentations and then compute relevance score. For
example, ORQA (Lee et al., 2019) utilizes indepen-
dent BERT-based encoders (Devlin et al., 2018) to
encode questions and documents respectively and
calculates the relevance score using the inner prod-
uct. However, this type of models suffer from only
capturing the shallow interactions between queries
and documents. On the other hand, modeling the
token-level interaction between question-document
pairs can be overly expensive. An effective trade-
off is to combine the benefits of two.
ColBERTv2 (Santhanam et al., 2021), for exam-
ple, is proposed to both boosts retrival quality of
multi-vector models and improves efficiency. Akin
to ColBERT (Khattab and Zaharia, 2020), Col-
BERTv2 encodes both passage d query q into multi-
vector representations. The passages are encoded
during offline indexing, and quries are encoded at
search time. The query q’s similarity to a passage
d is then captured by:

Sq,d =
N∑
i=1

M
max
j=1

Qi ·DT
j

To build a simple, uniform supervision scheme,
ColBERTv2 works on selecting challenging neg-
atives, avoiding mislabeled positives, and elimi-
nating penalty for retrieving false negatives. The
model is trained on MC MACRO Passage Rank-
ing and outperforms other retrievers with a highest

MRR@10 (39.7 for in-domain evaluation). Col-
BERTv2 is also evaluated on a series of out-of-
domain benchmarks. Besides, the residual rep-
resentation helps reduce the space footprint by
5− 8×.

2.2 Reader
The Reader is the main model of the system re-
sponsible for obtaining the answer to the test ques-
tion. Overall, there are two main categories for the
choice of the Reader model: extractive reader and
generative reader.
Extractive reader assumes that the answer exists in
the context. Usually, it predicts the start and end
position of an answer span either from the most
probable document(s) or from all retrieved docu-
ments. DrQA (Chen et al., 2017), DPR (Karpukhin
et al., 2020), REALM (Guu et al., 2020), etc. fol-
low this settings.
Generative reader, on the other hand, tries to gen-
erate the answer directly as a natural language se-
quence. Seq2Seq models such as Bidirectional
and Auto-Regressive Transformers (BART) (Lewis
et al., 2019) and the Text-To-Text Transfer Trans-
former (T5) (Raffel et al., 2019) are used to gener-
ate the answer (Zhu et al., 2021).
An extremely powerful generative model that has
been used in the in-context learning setting with
oustanding success is the GPT-3 model. Generative
Pretrained Transformer 3, as its name suggests, is
a recurrent generative language model. It has been
pretrained on tokens from Common Crawl, Web-
Text2, Books1, Books2, and Wikipedia (over 40GB
of text data). As a result it has a large number of
parameters, and has been found to work well on
a variety of tasks without the need of finetuning.
(Brown et al., 2020).

2.3 Prompt Generation
Generative readers like GPT-3 in the in-context
learning setting require prompts with a few exam-
ples of the task at hand in order to generate the
answer. In order to design the prompts, a number
of different strategies have been proposed.
LM-BFF (Gao et al., 2020) provides a suite of tech-
niques for fine-tuning language models in a few-
shot manner. The scenario is fine-tuning BERT
(Devlin et al., 2018) or RoBERTa (Liu et al., 2019)
on a small number of examples. The paper fol-
lows the prompt-based prediction and introduces
an automatic prompt generation method. For exam-
ple, for a sentiment classification task, the label is



mapped into a chosen word (e.g., “great” for pos-
itive examples, “terrible” for negative examples).
Then, a template (e.g., “It was great.”) is appended
to the original sentence to produce a full positive
or negative example. Examples, together with the
input to be classified, are fed into a Seq2Seq model
to make a prediction. Then, akin to GPT-3’s “in-
context learning” paradigm, an example selection
strategy is designed: randomly sample a single ex-
ample from each class for each input.
KATE (Liu et al., 2022) uses K-Nearest Neighbors
algorithm to search the embeddings of examples
and find the closest training examples generate the
GPT-3 input. The study explored the effectiveness
of different encoding strategies, and found that en-
coders that were fine-tuned on natural language
matching tasks gave better performance when used
to select the in-context examples as input for the
question-answering task.

3 Data & Metrics

In our work, we use the Stanford Question Answer-
ing Dataset (SQuAD 1.1) (Rajpurkar et al., 2016).
SQuAD is a reading comprehension dataset, with
questions generated by crowdworkers on a set of
Wikipedia articles. The answer to every question
is a span of text, from the corresponding reading
passage. SQuAD 1.1 is made up of about 100,000
questions, with the train size amounting to 87,599
examples. The articles used in building SQuAD
were partitioned into 80:10:10 for training, valida-
tion and test sets respectively.
SQuAD is not originally designed for the OpenQA
task, so we modified its usage to fit in our settings.
The detail is discussed in Section 4.4.
We use EM and Macro F1 scores as the quantita-
tive metrics. As a qualitative measure, we demon-
strate a few of examples generated by our proposed
methods and qualitatively assess the difference in
examples generated by different models.

4 Methods

As is shown in Figure 1, we adopt a Retriever-
Reader pipeline to approach the in-context learning
OpenQA problem. The following subsections de-
scribe the ColBERTv2 retriever, GPT-3 reader and
example selection strategies, respectively, with a
final subsection outlining the system development
process.

4.1 Retriever
For the passage retriever, we use a ColBERTv2
retriever initially trained on MS MARCO and pre-
index all the passages in SQuAD as the retriever’s
corpus (∼100K).

4.2 Reader
For the reader, we use the OpenAI GPT-3 API 1.
Specifically, we use the Curie engine. Although
OpenAI doesn’t seem to reveal the parameter size
of the Curie model, it’s the second powerful model
and strikes a good balance between the perfor-
mance and our budget.
For each input question, we use different example
selection strategies to select similar examples from
the SQuAD train set, and construct a GPT-3 input
which is a concatenation of the following elements:

1. A brief task description (optional). We run
experiments to assess whether including it im-
proves the performance or not.

2. A list of n selected SQuAD train set examples.
Each example is a (question, passage, answer)
tuple. We run experiments to find the best
example selection strategy and the best value
of n.

3. The input question.

A real example of the GPT-3 input is shown in
Appendix A.

4.3 Example Selection Strategies
To explore what types of examples helps GPT-3’s
in-context learning, we propose three example
selection strategies base on different types
of similarity measurement: lexical, syntactic,
semantic. Each strategy aims to select examples
with questions similar to the input question from
a certain aspect. Lexical similarity between
input question and example questions can be
measured by word match, and syntactic similarity
focuses on the sentence structure, which in our
setting can be reflected by the question type (e.g.,
“when”, “where”, “who” questions, etc). Semantic
similarity, on the other hand, focuses more on the
underlying meaning of the whole sentence. A
simplified example is shown below.

Input question: In what country is Normandy
located?

1https://openai.com/api/



Figure 1: Our Retriever-Reader Pipeline.

• Lexically similar question: Who ruled the
country of Normandy?

• Syntactically similar question: In what coun-
try is the Cevennes?

• Semantically similar question: Where is
Yingxiu located?

The following subsections describe these three
strategies, together with a hybrid strategy.

4.3.1 Lexical Similarity
To measure the lexical similarity, we use TF-
IDF as a similarity measurement model. TF-IDF
calculates term frequency and inverse document
frequency and multiplies them to compute term-
document scores. We consider the example ques-
tions as “documents” and the input question as
“query”. With the term-document scores, we vector-
ize all the documents and build inverted indexing
offline. For each query, we vectorize it, compute
its cosine similarity to each document, and select
the top similar documents to construct the GPT-3
input.

4.3.2 Syntactic Similarity
For the syntactic similarity, we naively use rule-
based methods to classify questions into differ-
ent types and questions within the same type are
viewed as similar. Since the questions in the

SQuAD dataset have fairly simple structures, a
straightforward way is to pre-classify the exam-
ple questions based on their first word or first few
words (e.g., who, when, where, in what country,
etc). Then for each input question, we classify
it in the same way and select examples from the
category it belongs to.

4.3.3 Semantic Similarity
In the end, to find semantically similar questions,
we use sentenceBERT (Reimers and Gurevych,
2019) to encode questions and use dot product to
measure the similarity between input question and
example questions. We then select example ques-
tions that have top similarity scores.

4.3.4 Hybrid Strategy
Since the different example selection strategies are
supposed to focus on different aspects of similarity,
a combination of these different strategies have the
potential to achieve overall better performance. To
validate this hypothesis, we further run experiments
with a hybrid strategy: for each input question, use
different strategies to sample several examples and
combine them to build the input.

4.4 System Development
With different example selection strategies, differ-
ent choices of the example number, and different
task descriptions, we build a series of retriever-
reader systems. Then, we use the QA pairs of
SQuAD dev set to compare the different systems



we propose and select the best method. Due to
budget constraints, we use a randomly sampled dev
set of size 200 for development. After that, we test
our best method on a held-out test set of size 300
which is randomly selected from SQuAD dev set
and is disjoint from our dev set.

5 Experiments & Results

We present three sets of our main experiments and
demonstrate the results. The corresponding analy-
sis and discussion are presented in Section 6.

5.1 Example Selection Strategy

As described in Section 4.3, we apply different
example selection strategies to retrieve relevant
SQuAD train set examples for each input ques-
tion. We experiment with three proposed strategies:
Lexical Similarity Strategy, Syntactic Similarity
Strategy, and Semantic Similarity Strategy.
We compare the EM and Macro F1 scores of these
strategies with the baseline strategy (randomly sam-
ples examples for each input question).
Moreover, to further explore the effect of exam-
ple ordering, we experiment different orderings for
the best performing method (Semantic Similarity
Strategy): random and reversely ordered, where the
former randomly shuffles the top relevant examples,
and the latter sorts the top relevant examples in a
descending order of their similarity scores. An in-
put with reversely ordered examples looks like:
{...3rd most similar example...}{...2nd most simi-
lar example...}{...most similar example...}{...input
question...}.
With the most relevant example closest to the ques-
tion, we assume it can lead to a different result
from the random ordering.
For these experiments, we fix the number of exam-
ples to be 3 and don’t include a task description.
The experiment results are shown in Table 1.
We also experiment on the hybrid strategy but are
excluding those results from our main report. The
results, analysis, and the reason we exclude them
are shown in Appendix B.

5.2 Number of Examples

In order to explore the effect of different numbers
of examples on GPT-3’s in-context learning, we ex-
periment on the Random and Semantic Similarity
Strategy with varying example numbers.
For the random strategy, we experiment with
2,3,4,5 examples. For the Semantic Similarity

Strategy, we experiment with 2,3,4 examples. We
randomly order selected examples for each input
question, and don’t include the task description for
these experiments.
Table 2 shows the experiment results. Figure 2
shows the trends of Macro F1 with regard to differ-
ent example numbers for the random baseline and
the semantic model.

Figure 2: Performance trends for different number of
Examples.

5.3 Task Description

Previous literature (Brown et al., 2020) follows a
setting where a brief task description is given to
GPT-3 together with a few examples. To examine
the effectiveness of such task descriptions, we ex-
periment on different wording of the description.
Appendix C shows the full list of task descriptions
that we experimented with.
Besides, as shown in Appendix A, we’ve been
following a structured and less natural fashion of
formatting the input examples. As a contrast to
that, we also experiment with a natural language-
modified input shown in Appendix D.
We fix the number of examples as 3, and randomly
order selected examples for each input question.
The results are shown in Table 3.

5.4 Evaluation on Test Set

Due to limited budget, we conducted all the other
experiments on the dev set, and only evaluated our
best model and the baseline model on the held-out
test set. We use 3 examples for each input question
and exclude the task description. The test result is
shown in Table 4.



Selection Strategy Example Order EM Macro F1
Random Random 0.425 0.5460

Lexical Similarity Random 0.440 0.5457
Syntactic Similarity Random 0.425 0.5521
Semantic Similarity Reversely Ordered 0.460 0.5738
Semantic Similarity Random 0.450 0.5649

Table 1: Experiment results for different example selection strategies and different ordering of selected examples
for each input query. The first line is the baseline model. The highest EM and F1 scores are in bold font.

#Examples Selection Strategy EM Macro F1
2 Random 0.5303
3 Random 0.5447
4 Random 0.5518
5 Random 0.455 0.5496
2 Semantic Similarity 0.5401
3 Semantic Similarity 0.455 0.5598
4 Semantic Similarity 0.450 0.5571

Table 2: Experiment results for different numbers of examples selected for each input query. The highest F1 scores
for each model are in bold font. Some EM scores are missing due budget constraint.

6 Analysis

We analyze the results presented in the previous
section and discuss our findings.

6.1 Syntactic Model
We had hypothesized that the model run with
syntactically similar examples would perform
relatively well. However, as Table 1 shows,
this similarity method did not perform much
better than the random baseline. Upon further
inspection of generated syntactically similar
examples, it was apparent that the method used
was perhaps overly simple. The strategy to use
questions with the same first word (i.e. "Who",
"What", "Where", etc.) would sometimes find
example questions in the train set that had the
same first word but had drastically different
question structure. An example is shown below:

Test question:

• What may also be required of teachers, in
some areas?

Train examples:

• What individuals live at Fatima House at
Notre Dame?

• What type of religion is Kirant Mundhum?

• What is another name for ancestor worship?

In the example above, the test question has the
same first word ("What"), but the question
structure itself is different from the train examples.
It has a comma and a clause at the end, and the
train examples do not. Additionally, some of the
training examples may be considered to be in
different categories from eachother. For example,
"What individuals ... " is more similar to a question
that would be asking "Who ..." instead of "What
...". Thus, the simple rule-based approach used
here could be too simplistic to get meaningful
separation of syntactically similar questions.

6.2 Lexical and Semantic Models

The results shown in Table 1 revealed that the lex-
ical and semantic models both provided some im-
provement in EM scores over the random baseline.
However only the semantic method provided im-
provement in F1 score. We hypothesize that since
the semantic model looks for questions that are
similar in meaning and then adds the question, its
associated answer, and background into the GPT-3
input, it adds additional information relevant to an-
swering the test question that helps GPT-3 generate
the answer.
Moreover, finding semantically similar examples
casts a wider “net” and not only captures examples
that are similar to the test question in simple term-



Prompt Type Task Description EM Macro F1
Structured Input 0.425 0.5460
Structured Input Find the correct answer to this question. 0.415 0.5238
Structured Input Answer this question. 0.445 0.5614
Structured Input I am a highly intelligent question answering bot ... 0.400 0.5365

Natural Input 0.380 0.5011

Table 3: Experiment results for different task description which shows at the beginning of the GPT-3 input. The last
line is for natural inputs as compared to structured ones (Appendix A shows an example). The highest EM and F1
scores are in bond font.

Selection Strategy Example Order EM Macro F1
Random Random 0.370 0.4933

Semantic Similarity Reversely Ordered 0.373 0.4949

Table 4: Evaluation results on the test set of our best model and the baseline model.

matching, but also captures those examples that are
similar in meaning.
Appendix B presents the results and analysis of the
hybrid strategy and the reason we exclude them
from our main report. It didn’t yield performance
any better than these methods alone.

6.3 Examples Ordering

The third variable that was modulated was the order
of examples in the prompt that was fed into GPT-3.
The ordering was either random, or in increasing
level of similarity. Based on the results shown in
Table 1, having increasing order of similarity as
input improves performance in the semantic model.
We hypothesize that having the most similar exam-
ple closest to the test question in the input helps
GPT-3 learn and understand the best example the
strongest. While GPT-3 has demonstrated substan-
tially good memory capacity and can recall verba-
tim, understanding natural language and answer-
ing given questions is much harder than merely
memorizing, while the in-context setting without
a fine-tuning procedure also adds to the difficulty.
In this context, our experiment results revealed a
potentially non-trivial impact of the example order-
ing mechanism.
It would be interesting to perform repeated experi-
ments and examine these results with a varied num-
ber of examples to see if the gap in performance
widens with more examples. Our results show that
a wisely chosen example number can enhance the
model’s performance.

6.4 Number of Examples
Table 2 and Figure 2 shows that for both the base-
line model and the semantic model, increasing the
number of examples results in a performance in-
crease followed by a decrease. For the random
baseline model, the optimal number we found was
4, and for the semantic model, the optimal is 3.
Choosing the number of examples involves a trade-
off: while more examples can potentially help the
model to learn the task better, they also add noise
and may affect the performance by posting a heav-
ier burden on the model’s memorizing capacity.
As a note, Table 2 has overlapped experiments but
the results slightly differ. It’s because the two sets
of experiments were conducted in different runs.
We didn’t average among multiple runs due to lim-
ited budget. It’s necessary to generate averaged
results among multiple runs for the future work.

6.5 Task Description
We tried a number of different task descriptions
for the question answer task, and found that we
were not able to observe a consistent improvement
above baseline for any one description. Although
Table 3 shows that “Answer this question” outper-
forms the baseline, while others don’t, a different
set of experiment runs (shown in Appendix E) show
substantially different results. It’s also not convinc-
ing to claim that “Answer this question” is a good
task description, while a very similarly worded sen-
tence “Find the correct answer to this question” is
not.
One possible explanation is that the GPT-3 input is
generally long (with around 1000 tokens), so the
task description is too short compared to the entire



input, thus not having an observable impact.
Again, we didn’t average among different runs due
to limited budget, and future experiments can con-
duct duplicated experiments to examine if different
task descriptions lead to consistent different in re-
sults.
We also tried a modified input example, where the
examples were reformatted to look like how a ques-
tion would naturally occur in an online forum. We
also did not see an improvement in this setting.

6.6 Evaluation on Test Set

As Table 4 shows, our best model is only slightly
better than the baseline model. This disagrees with
our findings on the dev set. It’s possible that we
overfitted our methods on the dev set. However,
since we only have a test size of 300, the result
generated on it can be biased. A more thorough
test evaluation should be undertaken in our future
work.

7 Conclusion

Overall, we present work on improving the perfor-
mance of GPT-3 on the in-context learning Open
Question Answering task by engineering the input
to GPT-3. We show the results of varying the se-
lection strategy of input train examples, modifying
the number of examples, and modifying the task
description/prompt language. The best performing
system had an input with training examples that
were most semantically similar, and had the exam-
ples in order of increasing similarity. We found
that the lexical and syntactic similarity methods
did not offer as much improvement above random,
and the optimal number of examples in the input
was between 3-4 examples. The input with ex-
amples from each of the three similarity methods
did not offer much improvement over the semantic
model. Additionally, adding the task description or
modifying the input to sound more natural did not
improve results over the baseline description-less
input. These results show that modulating different
aspects of the input to GPT-3 can improve per-
formance on the in-context OpenQA task. Future
work, detailed below, is need to understand the ro-
bustness of these proposed methods and identify
other potential input-modification strategies.

Known Project Limitations & Future Work

Known Project Limitations

As mentioned in the previous sections, due to time
and cost constraints, we were not able to perform
repeated experiments on each of the models and
average out the results. Our reported results are for
one run of each experiment. On the other hand, we
batched the examples before passing into GPT-3
and it may have compensated for averaging out the
results. For each batch, all test examples in that
batch have the same randomly generated examples
in GPT-3 input.
As discussed in Section 6.1, our design choice for
the syntactic model was rather simplistic and led
us to getting example questions that differ syntacti-
cally from the input question. If time would have
permitted, we could have made use of regEx or
some other pattern matching logic to enhance the
syntactic model.
The majority of our experiment results is reported
on our dev set. Given the limited budget, we only
ran the best model and the baseline on the held-out
test set. Moreover, limiting our dev size to 200 and
test size to 300 can been too small of a scope to
truly evaluate our model’s performance.

Future Work

With more time and cost budget, we would want
to run duplicated experiments and average out the
results. We would also experiment on a larger dev
set and a larger test set.
Additionally, we would want to confirm our hy-
pothesis that the syntactic model should show sub-
stantially better performance than the baseline of
randomly generated examples. To do this, there is
need to design a stronger syntactic model.
Another interesting future work is to hand-select a
few examples that generally work well for differ-
ent input questions. We may also observe certain
patterns within these examples and thus can design
automatic example generation methods.
As mentioned in 2.2, we are using OpenAI’s second
powerful GPT-3 model due to limited budget. We
recommend a rerun of the experiments on stronger
GPT-3 models to get better and potentially more
robust results.
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Appendix

A GPT-3 Input Example

An example input that contains three examples re-
trieved by the lexical, syntactic, semantic similarity
models, respectively:

Title: Atlantic_City,_New_Jersey
Background: The median income for

a household in the city was
$26,969, ..., including 29.1%
of those under age 18 and
18.9% of those age 65 or
over.

↪→

↪→

↪→

↪→

↪→

Q: What percentage of the
population in the city were
living below the poverty
line?

↪→

↪→

↪→

A: 23.6%

Title: London
Background: There are 366 railway

stations in the London
Travelcard Zones on an
extensive above-ground
suburban railway network ...
Clapham Junction is the
busiest station in Europe by
the number of trains passing.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Q: How many railway stations are
utilized by London's railway
network?

↪→

↪→

A: 366

Title: Guinea-Bissau
Background: Guinea-Bissau's GDP

per capita is one of the
lowest in the world, ... The
economy depends mainly on
agriculture; fish, cashew
nuts and ground nuts are its
major exports.

↪→

↪→

↪→

↪→

↪→

↪→

Q: How much of the population
lives below the poverty line?↪→

A: More than two-thirds

Title: Kenya
Background: years below 1990

levels. The infant mortality
rate is high at approximately
44 deaths per 1,000 children
in 2012 ... According to 2009

↪→

↪→

↪→

↪→



Q: How many Kenyans are living
below the poverty level?↪→

A:

B Results for Hybrid Strategy

We also conducted experiments with the hybrid
strategy described in Section 4.3.4 and compared
their results to the three strategies. However, those
were run on a different day and generated a differ-
ent set of results (the results for the same model
are not very consistent). This may be resulted from
a different random seed of GPT-3. Due to budget
constraint, we were not able to rerun experiments
for the hybrid ones. We discuss this randomness
factor in the limitation section.
The combined strategy where one example of each
of lexical, semantic, and syntactic similarity to-
gether did not yield performance that was any bet-
ter then these methods alone. Therefore, further
experimentation on order of examples did not focus
on this hybrid method.

C Task Descriptions

Here’s the list of task descriptions that we experi-
mented with:

• I am a highly intelligent question answering
bot. If you ask me a question that is rooted
in truth, I will give you the answer. If you
ask me a question that is nonsense, trickery,
or has no clear answer, I will respond with
Unknown.

• Find the correct answer to this question.

• Answer this question.

• Translate this sentence.

• Let’s think step by step.

D Natural Input Example

The first three Title/Context/Question/Answer ex-
amples are train examples, and the last example is
a Question/Answer prefix that is the test example.
I searched on Google and found this article: Kath-
mandu
The article said Kirant Mundhum is one of the
indigenous animistic practices of Nepal. It is prac-
ticed by Kirat people. Some animistic aspects of
Kirant beliefs, such as ancestor worship (worship
of Ajima) are also found in Newars of Kirant origin.
Ancient religious sites believed to be worshipped

by ancient Kirats, such as Pashupatinath, Wanga
Akash Bhairabh (Yalambar) and Ajima are now
worshipped by people of all Dharmic religions in
Kathmandu. Kirats who have migrated from other
parts of Nepal to Kathmandu practice Mundhum in
the city.
Q: What type of religion is Kirant Mundhum?
So your answer is: animalistic
I searched on Google and found this article: xxx
The article said xxx
Q: xxx
So your answer is: xxx
I searched on Google and found this article: xxx
The article said xxx
Q: xxx
So your answer is: xxx
Q: What group was responsible for causing more
violence in Wittenberg?
So your answer is: xxx

E Another Set of Task Description
Experiments

Table 5 shows the results of another set of task de-
scription experiments, which disagree with Table3.
Also, some adversarial experiments also lead to
good performance (e.g. “Translate this sentence.”).
The results are believed to be not consistent.

Task Description EM Macro F1
I am a highly intelligent
question answering bot... 0.405 0.5403
Find the correct answer

to this question. 0.430 0.5558
Answer this question. 0.390 0.5485

Translate this sentence. 0.400 0.5451
Let’s think step by step. 0.385 0.5387

Table 5: Experiment results for different task descrip-
tion which shows at the beginning of the GPT-3 input.
The highest EM and F1 scores are in bond font.
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